Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 25(1): 9, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482014

RESUMO

With the advent of continuous direct compression (CDC) process, it becomes increasingly desirable to characterize inherent powder blend heterogeneity at a small batch scale for a robust and CDC-amenable formulation. To accomplish this goal, a near infrared spectroscopy (NIRS)-based characterization approach was developed and implemented on multiple direct compression (DC) blends in this study, with the intended purpose of complementing existing formulation development tools and enabling to build an early CMC data package for late-phased process analytical technology (PAT) method development. Three fumaric acid DC blends, designed to harbor varied degrees of inherent blend heterogeneity, were employed. Near infrared spectral data were collected on a kg-scale batch blender via both time- and angle-based triggering modes. The time-triggered data were used to investigate the blending heterogeneity with respect to rotation angles, while the angle-triggered data were used to provide blending variability characterization and compare against off-line HPLC-based results. The time-triggered data revealed that the greatest blend variability was observed between revolutions, while the blending variability within a single revolution stayed relatively low with respect to rotation angles. This confirmed earlier literature findings that the bottom layer of powder blends tends to move with the blender within each revolution, and the most intense powder mixing takes place across revolutions. This also indicates the use of blending speed and the number of co-adds are not able to increase sampling volume to improve signal-to-noise ratio under a tumble-bin blender as what were typically done in a feedframe application. The angle-triggered data showed that there is a consistent trend between NIRS and HPLC-based methods on characterizing blend heterogeneity across the blends at a given sample size. This study contributes to establishing NIRS as a potential characterization approach for inherent powder blend heterogeneity for early R&D. It also highlights the promise of continuous characterization of inherent powder blend heterogeneity from gram scale to mini-batch CDC scale.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Pós
2.
Pharm Res ; 39(12): 3345-3357, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36180609

RESUMO

PURPOSE: We aim to perform a systematic study of the time consolidation effect, i.e. the reduction of powder flowability resulting from at-rest storage, on a diverse array of pharmaceutical powders under different stress, humidity, and length of time. METHODS: A ring shear cell-based methodology was employed. An instantaneous flow function was obtained, followed immediately by at-rest consolidation at precisely controlled humidity, stress, and duration. The consolidated powder was then subjected to shear-cell measurement. The difference in flowability between the immediate and consolidated specimens were attributed to the time consolidation effect. RESULTS: Among the six excipients tested, three exhibited time consolidation at varying extents. Citric acid and starch underwent time consolidation only at high relative humidity (RH = 75%), promoted by vapor condensation and liquid bridge formation. For both materials, the flowability decreased with time, and the extent of time consolidation was not sensitive to the stress applied (0.4-2 kPa). Importantly, mannitol was found to time consolidate under both 50% and 75% RH. Given time, mannitol formed cake, giving rise to flow function below unity. Inverse gas chromatography analysis indicated that mannitol possesses high total surface energy among known pharmaceutical powders. CONCLUSION: While time consolidation is prevalent among pharmaceutical powders, most can be mitigated by controlling the RH to below 75%. Notably, for materials possessing high surface energy, such as mannitol, time consolidation could occur at ambient humidity. Therefore, it is desirable to consider in-depth time consolidation evaluation for high surface energy powders, e.g. those subjected to milling or of amorphous nature.


Assuntos
Excipientes , Amido , Pós/química , Tamanho da Partícula , Excipientes/química , Amido/química , Manitol/química
3.
J Pharm Sci ; 110(9): 3276-3288, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097976

RESUMO

Developing solid oral drug products with good content uniformity (CU) at low doses is challenging; this challenge further aggravates when the tablet size decreases from a conventional tablet to a micro/mini-tablet (1.2-3 mm diameter). To alleviate the CU issues, we present a novel use of nanocrystalline suspension combined with high shear wet granulation for the first time. In this approach, nanomilled drug in the form of nanocrystalline suspension is sprayed onto the powder bed to ensure uniform distribution. The resulting granules had adequate particle size distribution and flow characteristics to enable manufacturing of micro-tablets with good weight uniformity and tensile strength. Nanomilled drug resulted in excellent content uniformity among individual micro-tablets even at a dose strength as low as 0.16 mcg, whereas micronized drug resulted in unacceptable CU even at 5x higher dose strength (0.8 mcg). Besides, the use of nanomilled drug has enhanced the dosing flexibility of micro-tablets and showed superior dissolution performance in comparison with micronized drug with no impact of storage conditions (40 °C/75%RH for six months) on their dissolution performance. The proposed approach is simple and can be easily incorporated into traditional high shear wet granulation process to develop sub-microgram dose solid oral drug products.


Assuntos
Suspensões , Composição de Medicamentos , Tamanho da Partícula , Pós , Comprimidos
4.
AAPS PharmSciTech ; 21(7): 270, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025237

RESUMO

Abuse-deterrent formulations (ADFs) using physical/chemical barrier approaches limit abuse by providing resistance to dosage form manipulation to limit drug extraction or altered release. Standardizing in vitro testing methods to assess the resistance to manipulation presents a number of challenges, including the variation in particle sizes resulting from the use of various tools to alter the tablet matrix (e.g., grinding, chipping, crushing). A prototype, direct-compression ADF using a sintered polyethylene oxide (PEO) matrix containing dextromethorphan, an enantiomeric form of the opioid, levorphanol, was developed to evaluate testing methodologies for retention of abuse-deterrent properties following dosage form tampering. Sintered PEO tablets were manipulated by grinding, and drug content and release were evaluated for the recovered granules. Drug content analysis revealed that higher amounts of drug were contained in the smaller size granules (< 250 µm, 190% of the theoretical amount) compared with the larger particles (> 250 µm, 55-75% of theoretical amount). Release testing was performed on various size granule fractions (> 850 µm, 500-850 µm, 250-500 µm, and < 250 µm) using USP type I (basket), type II (paddle), and type IV (flow-through) apparatus. The USP type I and type II apparatus gave highly variable release results with poor discrimination among the release rates from different size granules. The observed sticking of the hydrated granules to the baskets and paddles, agglomeration of hydrated granules within the baskets/vessels, and ongoing PEO hydration with subsequent gel formation further altered the particle size and impacted the rate of drug release. The use of a flow-through apparatus (USP type IV) resulted in improved discrimination of drug release from different size granules with less variability due to better dispersion of granules (minimal sticking and aggregation). Drug release profiles from the USP type IV apparatus showed that the larger size granules (> 500 µm) offered continued resistance to drug release following tablet manipulation, but the smaller size granules (< 500 µm) provided rapid drug release that was unhindered by the hydrated granule matrix. Since < 500-µm size particles are preferred for nasal abuse, improved direct-compression ADF formulations should minimize the formation of these smaller-sized particles following tampering to maintain the product's abuse-deterrent features.


Assuntos
Liberação Controlada de Fármacos , Polietilenoglicóis/química , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Comprimidos/química , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Humanos , Tamanho da Partícula
5.
Int J Pharm ; 587: 119571, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32652180

RESUMO

Low dose micro-tablets with acceptable quality attributes, specifically content uniformity (CU), would not only enhance the dose flexibility in the clinic, but also decrease excipient burden in pediatric population. Considering the CU challenges associated with directly compressed low dose micro-tablets, in this study, high shear wet granulation (HSWG) process was evaluated to manufacture micro-tablets with reduced CU variability. The impact of active pharmaceutical ingredient (API) particle size (D90 - 18-180 µm) and loading (0.67-16.67% w/w) on the critical quality attributes of micro-tablets (1.2 and 1.5 mm) like weight variability, CU, and dissolution were evaluated. Experimental results showed that final blends with flow function coefficient (ffc) ≥ 5.4 or Hausner ratio (HR) ≤ 1.43 facilitated robust compression of micro-tablets. With enhanced weight control, all the batches except the 1.2 mm micro-tablets and 2.0 mm micro-tablets with 0.67% w/w API loading and coarse API particle size (D90 - 180 µm) resulted in CU variability that meets the USP <905> CU acceptance criteria for individual micro-tablets. Apart from the above mentioned 1.2 mm micro-tablets, all the batches meet the USP <905> CU acceptance criteria for composites of 10 or more micro-tablets. Precise delivery of micro-tablets manufactured in the current study would allow dose titration in the increments of 11 mcg. The API particle size and loading impacted the in-vitro dissolution performance of micro-tablets with smaller API particle size and lower loading resulting in faster release profiles. This study provides a framework for developing low dose micro-tablets with acceptable quality attributes using HSWG process for micro-dosing, enhanced dose flexibility, and decreased excipient burden.


Assuntos
Excipientes , Criança , Composição de Medicamentos , Humanos , Tamanho da Partícula , Pressão , Comprimidos
6.
Int J Pharm ; 577: 119026, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31940456

RESUMO

Poor wetting and/or particle aggregation are the shortcomings of the dried nanocrystalline suspensions, which subsequently might hinder the superior dissolution performance of the nano-crystalline suspensions. The objective of this study was to evaluate the effect of wetting agents and disintegrants on the dissolution performance of dried nanocrystals of an active pharmaceutical ingredient (API) with poor wetting property. Danazol, a BCS Class II compound with high LogP and low polar surface area, was chosen as a model compound for this study. Danazol nanocrystalline suspension was prepared by wet-media milling and converted into powder via spray granulation either with mannitol or microcrystalline cellulose as carriers at a drug: carrier ratio of 1:9 w/w. Danazol nanocrystalline suspension showed a superior dissolution performance compared to an un-milled danazol suspension. Dried danazol nanocrystals suffered from poor wetting leading to hindered dissolution performance i.e. ~ 40% and ~ 15% drug dissolution within 15 min for the mannitol and microcrystalline cellulose-based granules, respectively. Addition of a lipophilic surfactant (i.e. docusate sodium) at a surfactant: drug ratio of 0.015: 1 w/w during granulation helped in retaining the superior drug dissolution rates i.e. more than 80% drug dissolution within 15 min for mannitol-based granules by enhancing the wettability of dried danazol nanocrystals when compared to a hydrophilic surfactant (i.e. poloxamer 188) or disintegrant (i.e. sodium starch glycolate or croscarmellose sodium). The fast-dissolving mannitol-based granules containing danazol nanocrystals and docusate sodium were compressed into a tablet dosage form. The tablets containing danazol nanocrystals with docusate sodium showed a superior dissolution performance compared to a tablet containing un-milled danazol with docusate sodium.


Assuntos
Danazol/química , Liberação Controlada de Fármacos , Nanopartículas/química , Comprimidos/química , Agentes Molhantes/química , Carboximetilcelulose Sódica/química , Celulose/química , Ácido Dioctil Sulfossuccínico/química , Portadores de Fármacos/química , Manitol/química , Tamanho da Partícula , Poloxâmero/química , Suspensões
7.
Int J Pharm ; 574: 118905, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31809860

RESUMO

Mini-tablets are an age appropriate dosage form for oral administration to pediatric and geriatric patients, either as individual mini-tablets or as composite dosage units. Smaller size mini-tablets than the commonly used 2 mm or larger size would offer more tailored micro-dose delivery of investigational drugs. This work demonstrated drug substance particle size, drug loading and mini-tablet size ranges to achieve acceptable quality attributes of mini-tablets. A platform formulation with 60, 80, and 100 µm (particle size D6,3) ibuprofen at 3, 14, and 25% loadings were directly compressed into 1.2, 1.5, 2, and 2.5 mm diameter mini-tablets. With an enhanced weight control approach, all the mini-tablet batches except the 1.2 mm diameter mini-tablets with 100 µm ibuprofen at 3% loading would achieve acceptable content uniformity as individual mini-tablets (USP <905> L2 criteria) and as composite dosage units of five or more mini-tablets (USP <905> L1 criteria). A dissolution method was developed and successfully utilized to evaluate the formulations herein. Small size mini-tablets, small ibuprofen particle size, and low dose (or low ibuprofen loading) enhanced the dissolution performance. In addition, hypothetical scenarios of potential dose flexibility, dose range, dose titration, and excipient burden were discussed. The results of this study provide guidance for development of smaller size mini-tablets that enable dosing as a single or composite dosage unit, reduce excipient burden and leverage dispensing technology to achieve enhanced dosing flexibility and micro-dosing.


Assuntos
Comprimidos/administração & dosagem , Comprimidos/química , Administração Oral , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Tamanho da Partícula , Pressão , Solubilidade
8.
Int J Pharm ; 568: 118509, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301463

RESUMO

The objectives of this study were to evaluate the impact of formulation variables on the drying of nanocrystalline suspensions either via bead layering or spray granulation and develop mini-tablets from the dried nanocrystalline powders. Irbesartan (crystalline Form B), a poorly soluble drug substance was chosen as a model compound. An optimized irbesartan nanocrystalline suspension with a mean particle size of 300 nm was utilized for the downstream processing. Irbesartan nanocrystalline suspension was dried either by layering onto the microcrystalline cellulose beads (i.e. 200 or 500 µm) or by granulation (mannitol or microcrystalline cellulose as substrates) at two different drug loadings (i.e. 10% or 30% w/w). Smaller size beads layered with nanocrystals resulted in faster dissolution profiles compared to larger size beads at both the studied drug loadings (i.e. 10 and 30% w/w). Mannitol granules containing irbesartan nanocrystals resulted in faster dissolution profiles compared to microcrystalline cellulose granules. Microcrystalline cellulose beads and mannitol granules containing irbesartan nanocrystals (i.e. 30% w/w drug loading) were further compressed into mini-tablets. Mini-tablets retained fast drug dissolution characteristics of the dried powders. The results from this study indicated that the spray granulation is a superior drying approach compared to bead layering for drying of irbesartan nanocrystalline suspension and mini-tablet development.


Assuntos
Anti-Hipertensivos/química , Composição de Medicamentos/métodos , Irbesartana/química , Nanopartículas/química , Celulose/química , Dessecação , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Manitol/química , Suspensões , Comprimidos
9.
Int J Pharm ; 568: 118189, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30851385

RESUMO

Nanocrystalline suspensions offer a promising approach to improve the dissolution rate of BCS Class II/IV drugs and hence oral bioavailability. Irbesartan (crystalline Form B), a poorly soluble drug substance was chosen as a model compound for the study. The objectives of the study were to formulate Irbesartan nanocrystalline suspension via media milling, study the effects of process and formulation variables on particle size reduction, and evaluate bead layering or spray granulation as drying processes. A Design of Experiment approach was utilized to understand the impact of formulation variables on particle size reduction via media milling. Drug concentration and type of stabilizer were found to be significant in particle size reduction. Optimized Irbesartan nanocrystalline suspension (i.e. at 10% w/w with 1% w/w poloxamer 407) showed superior in vitro dissolution profile compared to unmilled suspension. Optimized Irbesartan nanocrystalline suspension was converted into dried powders either by bead layering (with microcrystalline cellulose) or by spray granulation (either with mannitol or microcrystalline cellulose). DSC and PXRD studies revealed that Irbesartan remained crystalline post drying. Microcrystalline cellulose beads layered with Irbesartan nanocrystals showed about 65% drug dissolution within the first 10 min of dissolution study. Mannitol granules containing Irbesartan nanocrystals were fast dissolving (i.e. >90% drug dissolution within 10 min) compared to microcrystalline cellulose granules (i.e. approx. 46% drug dissolution within 10 min). Irbesartan nanocrystalline suspension had the fastest dissolution rates (i.e. >90% drug dissolution in two minutes) followed by mannitol-based granules containing dried Irbesartan nanocrystals (i.e. >90% drug dissolution in ten minutes).


Assuntos
Anti-Hipertensivos/química , Composição de Medicamentos/métodos , Irbesartana/química , Nanopartículas/química , Celulose/química , Dessecação/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Manitol/química , Tamanho da Partícula , Pós
10.
Drug Dev Ind Pharm ; 44(2): 215-223, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29057677

RESUMO

The primary objective of this study was to develop lipid-based self-microemulsifying drug delivery systems (SMEDDS) without using any organic cosolvents that would spontaneously form microemulsions upon dilution with water. Cosolvents were avoided to prevent possible precipitation of drug upon dilution and other stability issues. Different polysorbates, namely, Tween 20, Tween 40, Tween 60, and Tween 80, were used as surfactants, and Captex 355 EP/NF (glycerol tricaprylate/caprate) or its 1:1 mixture with Capmul MCM NF (glycerol monocaprylocaprate) were used as lipids. Captex 355-Tween-water ternary phase diagrams showed that oil-in-water microemulsions were formed only when the surfactant content was high (80-90%) and the lipid content low (10-20%). Thus, mixtures of Tweens with Captex 355 alone were not suitable to prepare SMEDDS with substantial lipid contents. However, when Captex 355 was replaced with the 1:1 mixture of Captex 355 and Capmul MCM, clear isotropic microemulsion regions in phase diagrams with sizes in the increasing order of Tween 20 < Tween 40 < Tween 60 < Tween 80 were obtained. Tween 80 had the most profound effect among all surfactants as microemulsions were formed with lipid to surfactant ratios as high as 7:3, which may be attributed to the presence of double bond in its side chain that increased the curvature of surfactant layer. Thus, lipid-surfactant mixtures containing 1:1 mixture of medium chain triglyceride (Captex 355) and monoglyceride (Capmul MCM) and as low as 30% Tween 80 were identified as organic cosolvent-free systems for the preparation of SMEDDS. Formulations with a model drug, probucol, dispersed spontaneously and rapidly upon dilution with water to form microemulsions without any drug precipitation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Polissorbatos/química , Probucol/administração & dosagem , Caprilatos/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Diglicerídeos/química , Liberação Controlada de Fármacos , Monoglicerídeos/química , Tamanho da Partícula , Probucol/química , Tensoativos/química , Triglicerídeos/química
11.
Drug Dev Ind Pharm ; 44(6): 895-901, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29254385

RESUMO

The objective of the study was to develop a self-microemulsifying drug delivery system (SMEDDS), also known as microemulsion preconcentrate, for oral delivery of five poorly water-soluble nutraceuticals or bioactive agents, namely, vitamin A, vitamin K2, coenzyme Q10, quercetin and trans-resveratrol. The SMEDDS contained a 1:1 mixture (w/w) of Capmul MCM NF (a medium chain monoglyceride) and Captex 355 EP/NF (a medium chain triglyceride) as the hydrophobic lipid and Tween 80 (polysorbate 80) as the hydrophilic surfactant. The lipid and surfactant were mixed at 50:50 w/w ratio. All three of the SMEDDS components have GRAS or safe food additive status. The solubility of nutraceuticals was determined in Capmul MCM, Captex 355, Tween 80, and the SMEDDS (microemulsion preconcentrate mixture). The solubility values of vitamin A palmitate, vitamin K2, coenzyme Q10, quercetin, and trans-resveratrol per g of SMEDDS were, respectively, 500, 12, 8, 56, and 87 mg. Appropriate formulations of nutraceuticals were prepared and filled into hard gelatin capsules. They were then subjected to in vitro dispersion testing using 250 mL of 0.01 N HCl in USP dissolution apparatus II. The dispersion test showed that all SMEDDS containing nutraceuticals dispersed spontaneously to form microemulsions after disintegration of capsule shells with globule size in the range of 25 to 200 nm. From all formulations, except that of vitamin K2, >80-90% nutraceuticals dispersed in 5-10 min and there was no precipitation of compounds during the test period of 120 min. Some variation in dispersion of vitamin K2 was observed due to the nature of the material used (vitamin K2 pre-adsorbed onto calcium phosphate). The present report provides a simple and organic cosolvent-free lipid-based SMEDDS for the oral delivery of poorly water-soluble nutraceuticals. Although a 50:50 w/w mixture of lipid to surfactant was used, the lipid content may be increased to 70:30 without compromising the formation of microemulsion.


Assuntos
Suplementos Nutricionais/normas , Diglicerídeos/administração & dosagem , Glicerídeos/química , Lipídeos/química , Monoglicerídeos/administração & dosagem , Polissorbatos/química , Tensoativos/química , Triglicerídeos/química , Diglicerídeos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Monoglicerídeos/química , Polissorbatos/administração & dosagem , Solubilidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...